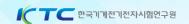


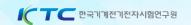
NDC 달성을 위한 주요국의 냉매 全주기 관리 동향

2025. 11. 3


KTC 탄소중립센터장 장 재 훈

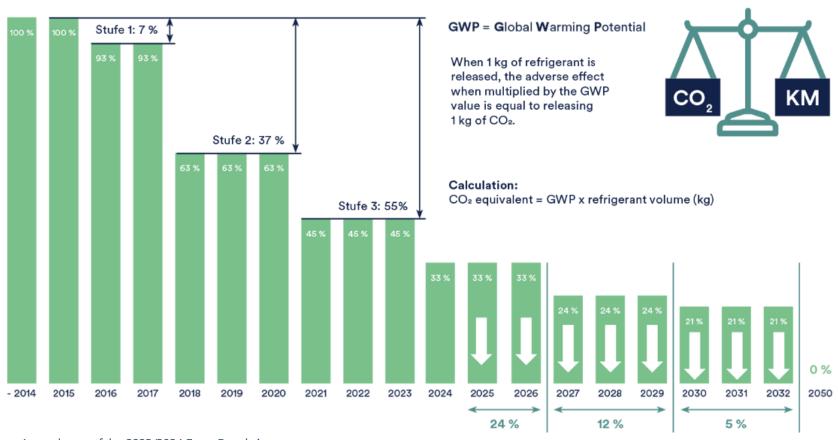
- 1. 주요국의 HFCs 배출 현황 및 전망
- 2. NDC 달성을 위한 냉매 全주기 관리 정책
- 高GWP 냉매 사용규제와 대체 전환 지원
- 냉매 회수 · 재사용 · 재생(재활용) 촉진
- 低GWP 냉매 사용 확대를 위한 안전기준 개정
- 정부 주도 냉매관련 기술개발(R&D)

주요국의 수소불화탄소(HFCs) 배출 현황 및 전망



〈 주요국의 HFCs 배출 현황 및 2030년 전망 〉 (백만톤CO₂eq)

771			실	전	20년 대비				
국가	1990	1995	2000	2005	2010	2015	2020	2030	감축률
일본	15.9	25.2	22.9	12.8	23.3	39.3	51.7	14.7	72%
미국	46.5	74.3	118.1	127.4	155.4	168.0	175.9	165.1	6%
영국	14.0	19.0	8.0	9.0	12.0	14.0	12.0	4.0	67%
캐나다	1.0	0.5	2.8	5.1	7.7	11.1	11.9	8.5	29%
프랑스	4.4	1.7	6.7	12.9	16.9	17.5	12.7	5.1	60%
노르웨이	0.0	0.1	0.4	0.5	0.9	1.0	0.8	0.4	50%
덴마크	0.0	0.3	0.8	0.9	0.8	0.5	0.3	0.1	67%
스웨덴	0.0	0.1	0.8	1.1	1.1	1.1	0.9	0.5	44%
스위스	0.0	0.2	0.6	1.0	1.3	1.5	1.4	1.1	21%


출처: 파리협정에 따른 국가별 2024년 격년투명성보고서(BTR)

유럽 New F-Gas Regulation - HFCs 감축 계획

■ 2024년 F-Gas 규정 개정은 더 엄격한 단계적 폐지 일정과 경제적 압박(톤당 3유로 고정 비용)을 통해 F-gas 사용량을 크게 줄이고, 대체 냉매 채택을 가속화하려는 강력한 정책

[2024년 F-가스 규정 개정안]

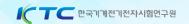
*출처: Kampmann, Amendment of the 2023/2024 F-gas Regulation

대체냉매 및 냉매 재활용 기술 개발

- 폭발한계 이하의 냉매량으로 냉동능력을 극대화하는 자연냉매 히트펌프 개발
- 혼합냉매 회수를 위한 하이브리드 시스템 개발 및 플랫폼 구축

EU의 HFCs 대체기술 개발 동향

- 탄화수소계 자연냉매 사용범위 확대를 위한 가연성을 극복한 냉동공조 기술 개발
 - ☑ 高인화성 자연냉매(프로판)의 최대 사용허용량 범위 내 최대 냉동능력을 구현하기 위한 고효율 히트펌프 시스템 기술개발 프로젝트 시행


	LC150(Low Charge 150 g)
항목	내용
개요	독일 연방 경제에너지부 지원 기술개발사업: 1kW당 약 10g의 프로판 냉매를 사용하는 히트펌프 개발 ('23.3)
주요 성과	(1) 124g 프로판으로 12.8kW 난방 용량 달성(10g/kW)으로 목표였던 15~30g/kW를 초과 달성 (2) 열교환기 내부 부피와 오일 사용량 최소화 및 센서 등 추가 구성 요소를 줄이고 배관 길이를 최적화

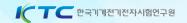
EU의 냉매 회수·재생 기술 개발 동향

- "LIFE 4 F-gases 프로젝트를 통해 혼합냉매에서 HFCs를 선택적으로 회수하는 멤브레인 기반 하이브리드 시스템 개발
- ☑ R404A, R407C, R410A에서 HFC-32, HFC-125, HFC-134a를 선택적으로 회수, 재생냉매 품질기준(AHRI 700)을 충족하는 고순도 재생기술
- "LIFE 3R" 프로젝트를 통해 냉매 재활용 촉진을 위한 회수재생 기술개발 및 거래플랫폼 구축
 - ☑ 휴대용 수분 및 산도 검사기, 회수 용기, 휴대용 냉매 분석기, 회수장비(고성능 진공펌프·수분제거 필터 포함) 등 고품질의 회수·재활용 요소 기술 개발
 - ☑ 재생냉매 품질 및 정보 제공을 위해 자기인증 플랫폼(Self-Certification Platform) 및 거래 가능한 냉매 데이터를 실시간으로 제공하는 3R 마켓플레이스 플랫폼 구축

용도별 F-Gas 사용규제 이행 조건

■ 건축법과 기술 표준은 F-가스 규정의 성공적 이행을 방해하지 않아야 하며, 천연 냉매와 대체 기술을 채택할 수 있도록 수정 및 정비되어야 함

F-가스 규정의 주요 내용:

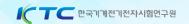

특정 애플리케이션의 단계적 폐지는 "안전 요구사항을 충족해야 하는 경우" 예외를 받을 수 있음. 설치 현장의 안전 요구사항으로 인해 천연 냉매를 사용할 수 없는 경우, GWP 제한은 750으로 설정

*여러 국가의 건축 안전 및 화재 규정은 공공 및 사설 건물에서 특정 물질 사용을 명시적으로 금지. 표준 및 국가 규칙은 천연 냉매의 채택 및 F-가스 규정의 이행을 방해해서는 안되며, 기술적 현실을 반영하도록 업데이트해야 하며, 그렇지 않을 경우 안전 요구사항이 특정 장비를 예상치 못한 방식으로 단계적 폐지에서 제외시키는 데 사용될 수 있음

(국가별 사례)

이탈리아, 프랑스, 스페인: 특정 유형의 공공 접근 건물에서 에어컨 장비에 가연성 냉매를 사용하는 것을 제한스웨덴: 가연성 냉매 사용에 대해 추가적인 위험 평가가 요구되며, 이는 추가적인 시간 및 비용 부담으로 이어짐. 다수의 EU 회원국: 지역 건축법 및 화재 규정, 운송 및 저장 관련 규정이 가연성 냉매 사용을 제한.

유럽 대체냉매 안전 및 기술기준



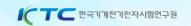
- 유럽은 ISO·IEC 국제표준을 유럽 지역 실정에 맞게 채택 및 보완하여 EN 계열 표준 사용
- EN 378과 EN IEC 60335는 냉동·공조장비의 안전설계, 충전한도, 환기·감지 등 세부 기술요건을 EU 법령과 연계하여 구체화
- EU 법령을 기반으로 하는 ATEX(폭발위험환경)과 PED(압력기기지침)는 냉매의 인화성·가연성 특성을 고려한 법적 의무 요건으로 작동

[EU 냉매 안전기준 표준]

구분	표준(지침)번호 / 명칭	주요 내용
냉동시스템 안전	• EN 378 시리즈 • Refrigerating systems and heat pumps — Safety and environmental requirements	• ISO 5149 기반의 유럽판 표준설치환경·충전한도·감지·환기 조건을 구체화EU 법령 (PED, ATEX)과 통합 운영
전기제품 안전	• EN IEC 60335 시리즈 • Household and similar electrical appliances — Safety requirements	• IEC 60335을 유럽이 채택한 형태2-40(공조기), 2-89(상업용 냉장기), 2-24(가정용 냉장고) 등으로 구분A2L, A3 냉매 대응 충전한도, 점화원 통제 포함
폭발위험 방지	ATEX 지침 (2014/34/EU)Equipment for explosive atmospheres	• 폭발위험 환경(가연성 냉매 포함)에서 사용하는 설비의 방폭 설계 의무전기부품·제어부 방폭등급 요구
압력기기 안전	PED 지침 (2014/68/EU)Pressure Equipment Directive	• 냉매 회로의 압력용기, 밸브, 배관의 설계·시험·인증 요구가연성 냉매 사용 시 고위험등급 분류 및 안전장치 추가 의무

SKILLSAFE EU 프로젝트

■ 가연성이 있는 低GWP 냉매 사용 증가에 따른 <mark>설치자·소비자 안전 확보</mark> 및 R290 기반 주거용 공랭식 모노블록 <mark>히트펌프의 안전한 취급 및 설치</mark>를 위한 산업 전반의 가이드라인 개발을 위한 EU 프로젝트


프로젝트 요약

🔾 목표

- ☑ 유럽 전역에서 프로판(R-290)을 냉매로 사용하는 공랭식 일체형(air-to-water) 히트펌프의 안전한 취급과 설치를 위해, **통합된 유럽 공통** 안전 가이드라인과 교육체계 구축
- ♥ 주요 수행 내용 (6개 핵심 과업)
 - ☑ 유럽공통 가이드라인 개발
 - 제조사, 교육기관, 설치자 등 이해관계자가 참여
 - R-290 냉매를 사용하는 히트펌프의 안전 취급 관련 이슈를 포괄적으로 다룸
 - ☑ 현장 검증 및 교육훈련 시범 운영
 - 5개 EU 국가의 기술학교(훈련기관)에서 설치자 교육을 시범 실시
 - 약 100명의 설치자가 업스킬(기술 향상) 훈련을 받게 됨
 - ☑ 훈련모듈 개발 및 보급
 - 가이드라인 기반의 표준 교육모듈 제작
 - 유럽 내 관련 기업과 근로자 대상 재교육·기술 향상용으로 활용
 - 각국 언어로 번역되어 유럽 전역의 교육기관에 확산 예정

- ☑ 현장 리스크 평가 도구 개발
- 가이드라인 부속서(annex)로 현장 리스크 평가 체크리스트 작성
- 이를 활용한 리스크 평가 전문교육 과정도 개발
- ☑ 인식제고 캠페인
- 교육자, 설치자, 건물주, 시공업자, 배관공, 인증기관, 정책결정자, 최종사용자 등약 25,000명의 이해관계자를 대상으로 안전인식 제고
- R-290 히트펌프 취급의 위험요소, EU 차원의 안전규칙 및 신규 교육모듈 안내
- ☑ 성과 확산 및 홍보
- 프로젝트 웹사이트, 학회, 전시회를 통해 결과를 공유
- 약 3,000명의 최종사용자(end-users) 에게 성과 전달

유럽 대체냉매 전환 보조금 · 인센티브 제도

- 독일은 BAFA Kälte-Klima-Richtlinie*를 통해 냉동공조 보조금 제도 운영. 非할로겐 냉매를 사용하는 냉동·공조 설비, 시스템 전환·개조 설비 대상으로 지원하며, 설비의 냉방능력 및 적용 분야에 따라 보조금 차등 지급
- * 냉동 및 공조 지침(고정식 응용 분야에서 非할로겐화 냉매를 사용한 에너지 효율적인 냉동 및 공조 시스템 촉진)
- ** 상업 매장용 냉각기, 실내 공기조화용 기계 등 일부 구성요소는 지원 제외

지원 대상 사업 및 대상자

♡ 지원 대상 사업

- ☑ 공정폐열(Abwärme)을 활용하는 히트펌프 설치
- ☑ 기존설비에 Trockenkühler(건식냉각기) 추가 설치
- ☑ 보조 컴포넌트(공냉기, 축열조, 배관, 제어시스템) 설치
- ☑ 재생에너지 연계(PV, 풍력, 태양열) 시스템과의 통합
- ☑ 소형 냉동기(≤10 kg 충전량)의 효율개선: 가수소 냉매로 전환, 인버터·전자팽창밸브 등 추가

☑ 지원 대상자

- ☑ 기업, 지방자치단체, 공공기관, 대학·병원·교회기관 등
- ☑ 개인은 지원 제외
- ☑ 신청자는 장비의 소유자, 임차인 또는 위탁 Contractor일 수 있음

지원 기간 및 지원 방식

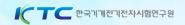
♥ 지원 기간 및 집행기관

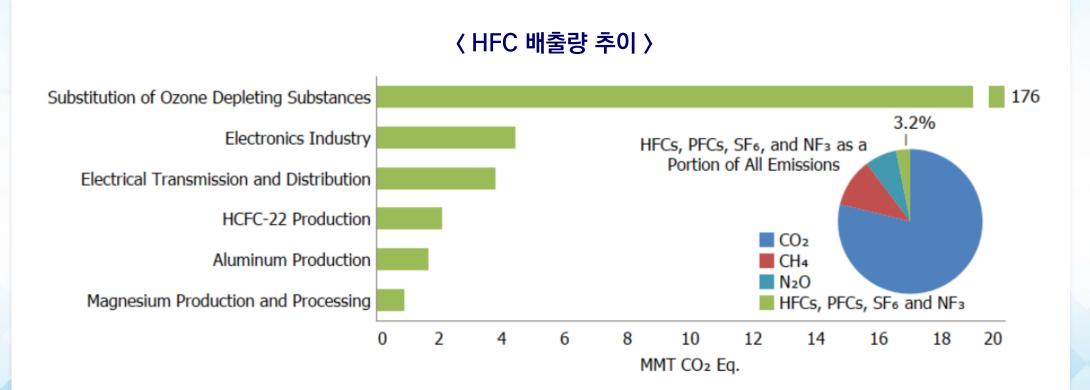
- ☑ 집행기관: Bundesamt für Wirtschaft und Ausfuhrkontrolle (BAFA)
- ☑ 발효일: 2024년 3월 1일
- ☑ 유효기간: 2026년 12월 31일까지
- ☑ 2022년 Kälte-Klima-Richtlinie 전면 대체

🗘 지원 방식 및 금액

☑ 무상보조금(Grant) 형태

기본 계산식: F = (A × X B + C) × X (장비종류별 계수 A.B.C 적용)

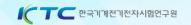

☑ 보조율 한도


- De minimis : 최대 50 % 지원

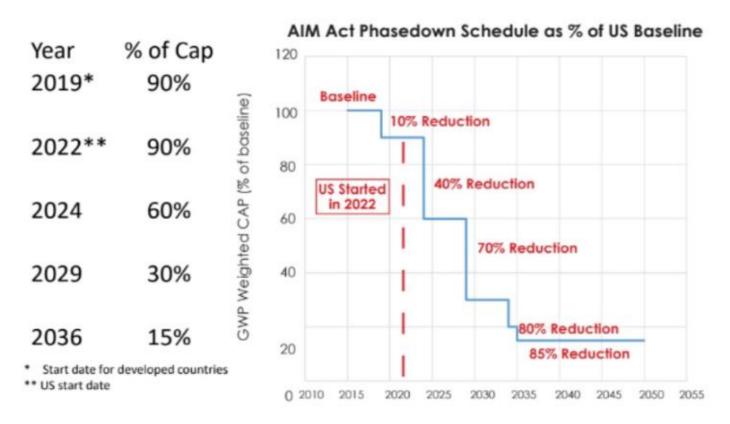
- AGVO : 투자비의 15 % (소기업 20 %, 중기업 17.5 %)

☑ 상한액: 한 프로젝트당 200,000 유로

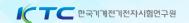
미국의 HFCs 온실가스 배출 현황 및 전망



〈미국의 ODS 대체물질 사용부문(2F) 온실가스 배출 현황 및 전망 〉 (백만톤CO2eq)

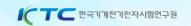

연도	1990	1995	2000	2005	2010	2015	2020	2025	2030
HFC 배출량	46.5	74.3	118.1	127.4	155.4	168	175.9	178.8	165.1
국가 총량	6,453.4	6,785.4	7,327.6	7,434.8	7,007.5	6,689.1	6,571.7	5,981.4	6,048.9

미국의 HFCs 감축계획


■ 미국은 HFC 배출량이 22년 3.1억톤CO2eq에서 2050년 3.6억톤 CO2eq까지 증가할 것으로 전망되며 2021년 AIM ACT법을 제정하여 2036년 까지 '11~'13년 평균 대비 85% 감축하는 감축 목표 수립

[미국의 HFC 단계별 소비량 감축계획]

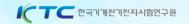
^{*}출처: https://www.iiar.org/IIAR/IIAR/Government_and_Code/What_is_the_AIM_Actaspx


미국의 HFCs 감축 정책 추진 현황

〈 미국의 ODS 대체물질 사용부문(2F) 감축 정책 추진 현황 〉

감축정책 및 조치명	정책 및 조치 목표	감축정책 유형	이행 상태	간략한 설명	시행 시작 연도	시행 주체	감축효과 추정치 (비누적, 천톤CO2e)	
							2020	2030
미국 혁신 및 제조법 (AIM Act)	 HFC 생산 및 소비 점진적 감소 HFC 및 대체물질의 재활용 최대화 및 방출 최소화 다음 세대 기술로의 섹터 기반 전환촉진 	규제적	시행 중 및 지속 중	 허용 배분을 통한 HFC 생산 및 소비 점진적 감소 설정 기존 물질의 재활용 증대를 위한 규정 설정 대체물질로의 전환을 위한 서브섹 터에 대한 제한 설정 	2022	환경 보호청	n/a	107,951
중요 신규 대체물질 정책 프로그램	• 오존파괴 물질에서의 전환 촉진	규제적	시행 중 및 지속 중	• 산업 및 소비자 부문에서 오존 파괴 물질에서의 원활한 전환 을 촉진함	1990	환경 보호청	469,294	469,294
그린칠 고급 냉장 파트너십	• 슈퍼마켓에서 오존 파괴 물질 및 온 실가스 배출 감소	자발적	시행 중 및 지속 중	• 데이터 수집, 벤치마킹, 협력 및 정보 공유를 통해 슈퍼마켓에서 의 오존 파괴 물질 및 온실가스 냉매 배출 감소	2007	환경 보호청	16,055	18,829
책임 있는 가전제품 폐기 프로그램	• 폐기된 가전제품에서의 냉매 및 발포제 배출 감소	자발적	시행 중 및 지속 중	• 폐기된 가전제품에서의 냉매 및 발포제 배출 감소	2006	환경 보호청	1,291	249
HFC 및 PFC 화재 억제제 배출 저감을 위한 자발적 실천 지침	• 화재 억제 대체물질로 사용되는 HFC 및 PFC의 비화재 배출 최소화 및 사람과 재산을 화재 위협으로부터 효과적으로 보호	자발적	시행 중 및 지속 중	• 비화재 배출 최소화 및 효과적인 제품 및 시스템 사용을 통해 HFC 및 PFC 사용에 따른 배출 감소	2002	환경 보호청	n/a	n/a

미국 캘리포니아 高GWP HFCs 사용제한 정책


■ 캘리포니아 CARB는 HFCs 감축을 위해 냉장, 공조, 냉각기, 아이스링크, 에어로졸 등 최종 용도에서 특정물질에 대해 구체적으로 사용을 규제하고 있으며 최근 개정을 통해 GWP 한도 등 규제 업데이트

[제안된 개정안 주요 내용 요약]

- 1. 특정 준수 유효 날짜가 지정된 GWP 한도 설정
- '22년 1월부터 50파운드 이상의 냉매를 포함하거나 새로운 시설에서 사용되는 새로운 냉동시스템은 GWP<150 냉매 사용
- -50파운드 이상 냉매를 포함하는 소매 식품 시설의 기업은 '30년까지 회사 전체 HFC 감소 달성 의무 [*회사 전체 가중 평균 GWP를 1,400 미만으로 낮추거나, '30년까지 '19년 수준 대비 온실가스 배출 잠재력(GHGp) 55% 감축]
- -새로운시스템을 설치하는 비소매 식품 냉장시설은최종 용도에 따라 750에서 2,200 사이의 GWP 한도충족
- -새로운 에어컨 장비(주거용 및 비주거용)는 GWP<750 미만인 냉매를 사용, 구체적인 카테고리에 따라 유효 날짜가 다름
- 새로운 룸/벽/창문형 에어컨 장비, PTAC, PTHP, 휴대용 에어컨 장비 및 주거용 제습기는 2023년 1월 1일부터 사용 금지
- 기타 모든 에어컨 장비는 2025년 1월 1일부터 사용 금지
- 새로운 가변냉매유량(VRF) 시스템은 2026년 1월 1일부터 사용 금지
- 2. 냉매 회수, 재활용 및 재사용 요구사항(R4 프로그램) 생성
- 3. 기록 보관, 보고, 등록 및 라벨링 요구 사항 추가

*출처: European Commission. California Code of Regulations - Final Regulation Order

미국 캘리포니아 재생냉매 정책

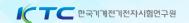
■ 냉방 장비 및 VRF 제조업체는 일정 시점까지 회수된 R-410 냉매를 사용해야 함. 각 업체는 2018-2019년 데이터를 기준으로 회수 냉매 사용량을 계산하고, 2025년, 2026년까지 필요한 양을 충족해야 함

AC 장비 제조업체의 인증된 재생 냉매 사용 요건 ('25년 1월 1일 시행)

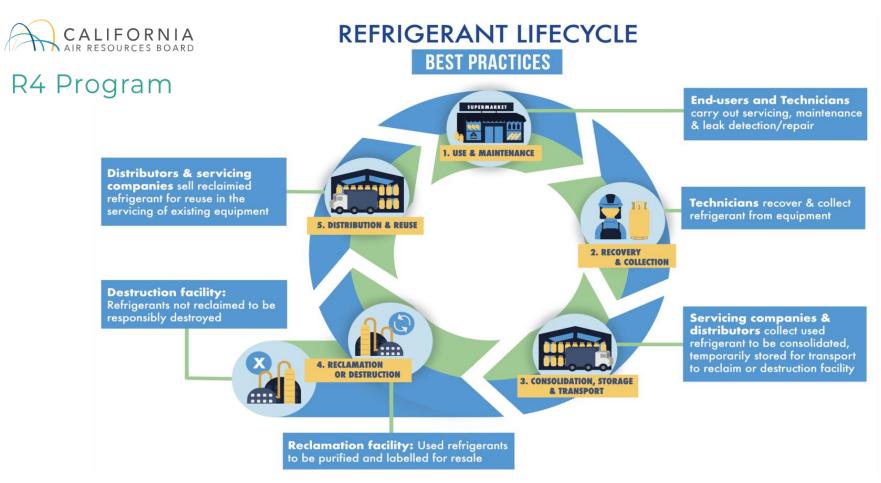
AC 장비 제조업체는 '25년 1월 1일부터 재생 R-410 냉매를 일정량 사용해야함

- '18년과 '19년 캘리포니아에 투입된 냉매량 기준으로 평균치를 산출하여 연간 사용 요건 결정하고, '25년 7월 1일까지 이 요건을 충족해야 함
- 사용 요건은 신규 장비 또는 기존 장비의 서비스에 재생 냉매를 사용하는 방식으로 충족할 수 있으며, 조기활동 크레딧도 옵션으로 포함됨

VRF 장비 제조업체의 인증된 재생 냉매 사용 요건 ('26년 1월 1일 시행)

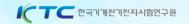

- VRF 장비 제조업체는 '26년 1월
 1일부터 재생 R-410 냉매를 일정량
 사용해야함
- '18년과 '19년 캘리포니아에 투입된 냉매량 기준으로 평균치를 산출하여 연간 사용 요건 결정하고, '26년 7월 1일까지 이 요건을 충족해야 함
- 사용 요건은 신규 장비 또는 기존 장비의 서비스에 재생 냉매를 사용하는 방식으로 충족할 수 있으며, 조기 활동 크레딧도 옵션으로 포함됨

AC 및 VRF 제조업체의 보고 요건


- AC 및 VRF 제조업체는 '23년 7월
 1일까지 초기 기준 보고서를
 제출해야 하며, 이후 매년 7월
 1일까지 연례보고서를 제출해야함
- 보고서에는 재생 냉매 사용량과 관련된 세부사항이 포함되어야 하며, 인증된 재생 냉매 구매 및 사용에 대한 서명된 인증서가 요구됨
- 모든 기록은 5년 동안 보관해야 하며, 요청시 CARB에 제출해야 함

*출처: European Commission. California Code of Regulations - Final Regulation Order

미국 캘리포니아 재생냉매 정책

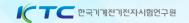


■ 미국 캘리포니아주는 '23년부터 R-410A 냉매를 사용하는 A/C, VRF 장비*에 일정비율 재생냉매 단계별 사용의무 부과(10~25%), '22년부터 냉동공조설비 유형별 냉매 누출 최대 허용 기준 강화 (15%〉10%)

출처: https://ww2.arb.ca.gov/our-work/programs/california-significant-new-alternatives-policy-snap/r4-program
Destruction is a Better Option Than Refrigeration Recycling - Trakref® (https://retradeables.com/mission/)

미국의 대체냉매 안전 및 기술기준

- 미국은 ASHRAE 34*를 통해 독성(A/B)과 가연성(1,2L,2,3) 매트릭스에 따라 냉매 안전 등급 규정
- * ANSI/ASHRAE 34-2022, Designation and Safety Classification of Refrigerants
- AHSRAE 15(상업용) 및 15.2(주거용)에서는 ASHRAE 34를 통해 정의된 냉매등급을 바탕으로 허용 충전량, 환기·누설감지기 설치 등을 규정하는 냉매 사용 장비에 대한 기본 안전 규격 제공


[ASHRAE Standard 34 냉매 명칭 및 안전 분류] [ASHRAE Standard 34의 냉매 안전 그룹] · ASHRAE 34 - Designation and Safety Classification of Refrigerants higher **A3 B3** flammability · Refrigerants are categorized for toxicity A2 **B2** flammable **Higher Toxicity** Lower Toxicity lower A2L B₂L flammability · Refrigerants are classified with respect to flammability no flame Flammable A1 **B1** propagation but with Higher No Flammable Low Flammability Flammability Burning Velocity

higher

toxicity

lower toxicity

미국 대체냉매 안전 및 기술기준

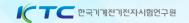
- A2L* 냉매 사용 확대에 따라 건축물·기계·전기·화재안전 등 분야별 국제코드 상의 기술·안전기준 업데이트를 위한 ICC ** 2024 I-Code A2L Refrigerant Related Changes 주요 개정 사항
- * R-454A, R-454B, R-454C, R-455A 등 GWP 750 이하 기준을 만족하는 저GWP 대체냉매
- ** International Code Council

국제화재코드(2024 IFC) 주요 개정

- 기계실 및 감지·환기 기준 강화
 - ☑ A2L 기계실 요건(608.18)
 - 감지기 25% LFL에서 환기 자동 작동
 - 환기배출구 높이 15ft 이상, 창과 20ft 이상 거리
 - ☑ 비상환기 유량 표 (R-32, R-1234yf 등)
 - ☑ NFPA 70 Class I Div.2 전기방폭구역 적용 예외 허용

국제건축코드(IBC) 개정

- ♥ 위험물 분류 및 허용량 조정
- ☑ Category 1A / 1B 정의 통일
- ☑ 연소속도 기준(3.9 in/s)으로 H-2 ↔ H-3 구분
- ☑ 스프링클러 설치 시 허용 저장량 2배 상향
- ☑ 폭발통제시설 예외 (Low BV 냉매)


국제주택코드(IRC) 개정

- 주거용 장비 설치·충전·표시 기준
 - ☑ UL/CSA 60335-2-40 인증 의무
 - ☑ 충전한도: 34.5 lb (15.7 kg)
 - ☑ 감지기·라벨·설치문서 부착 의무
 - ☑ 덕트 내 부품은 2.5 kVA 초과 전기부하, 발열·스파크 발생 부품 사용 금지

국제기계코드(IMC) 개정

- ♥ 냉매 분류표 및 OEL 기준 업데이트
 - ☑ 냉매별 LFL, OEL, RCL 최신화
 - ☑ A2L 냉매: R-32 (LFL 14.4%, OEL 1,000 ppm)
 - ☑ 환기 및 감지기 작동 시점 명확화
 - ☑ 장비 인증: UL 60335-2-40/-2-89 준수

미국 대체냉매 안전 및 기술기준

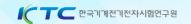
- UL 표준은 제품 설계·시험·라벨링 안전 요구사항을 규정한 최종단계 기술기준으로, 냉매 관련 장비는 IEC 60335 시리즈를 기반으로 하되, 미국 內 설치·서비스 환경을 반영한 UL 60335 시리즈 적용
- 장비 유형별로 적용 UL 표준이 상이하며, 충전한도·점화원·라벨링 등이 구체적으로 규정됨

[UL 표준 주요 기술요건 요약]

[UL 60335-2-40으로 전환]

장비유형	적용 표준	주요 내용
공조용 장비 <i>가정·상업용</i> 에어컨/히트펌프	• UL 60335-2- 40 (4판, 2022~)	 A2L·A3 전반 설계·시험 기준 충전한도: 실내 체적·LFL 기반(4배 안전계수) 점화원 배제·누설감지·강제환기·라벨링 요구 멀티/VRF 등 분리형은 ASHRAE 15 병행 적용
상업용 자립형 냉장·쇼케이스 <i>가정·상업용</i> 에어컨/히트펌프	• UL 60335-2- 89 (2판)	 A3/A2L 충전한도 상향 반영 R-290(A3): 500 g(오픈형) / 300 g(도어형) 허용 형식·환기·개방도에 따라 세부한도 상이
가정용 냉장·냉동	• UL 60335-2- 24 (2024 판)	 A3(R-600a, R-290) 충전한도 150 g/회로 설치·마킹·서비스 요건 명시

미국 AHRI Flammable Refrigerants Research Initiative



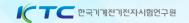
■ 低GWP 냉매(A2L, A3 등) 상용화를 위하여 안전기준 개정이 필요하지만, 실증 데이터가 부족하여 표준 개정이 어려운 상황. 이에 따라, 대부분 가연성으로 분류되는 低GWP 냉매 사용을 위해 산업계·학계·정부기관 공동으로 <mark>실험·데이터베이스 구축</mark>을 추진하고 공공 데이터와 과학적 근거를 마련해 관련 <mark>안전 기준(UL, ASHRAE 등) 및 코드 개정을 지원</mark>하는 이니셔티브

[주요 프로젝트 목록]

착수된 고우선순위 프로젝트	자금지원 기관	프로젝트 개요 (요약)	상태
AHRTI-9007-01 (냉매의전체실내규모누출및점화테스트에의한벤치미킹위험)	AHRI	A2L 냉매 전실규모 누설·점화 위험도 실험	완료
AHRTI-9007-02 (냉매의전체실내규모누출 및점화테스트를 통한벤치미킹위험)	CARB	A3 냉매 전실규모 누설·점화 위험도 실험	완료
AHRTI-9008 (냉매의 고온 표면 점화 온도 조사)	AHRI	A2L 냉매 핫서피스 점화 온도 연구	완료
AHRTI-9009 (HVACR 장비의 A2L 냉매 누출 감지)	AHRI	A2L 냉매 누설감지 기술 평가(IR, MOS 등)	완료
AHRTI-9014 (HVACR 장비에 사용하기 위한 냉매 감지기 특성 평가)	AHRI	냉매 감지센서 성능평가 및 요건정의	완료
AHRTI-9015 (공조 및 냉동 장비의 냉매 누출 완화 효과 평가)	AHRI	누설 완화전략 효과 실증	완료
ASHRAE-1806 (가연성 냉매 점화 후 위험 평가)	ASHRAE	점화 후 사건 심각도 분석	진행중
ASHRAE-1807 (기연성냉매취급,운송,보관,장비서비스 및설차에 대한지침)	ASHRAE	가연성 냉매 취급·저장·운송 가이드라인 개발	진행중
ASHRAE-1808 (기연성냉매를 사용한 장비서비스 및설차: 현장에서 만든 기계조인트 평가)	ASHRAE	현장 조인트 누설시험(브레이징 외 접합부 검증)	완료
ASHRAE-1855 (기연성불소화냉매의 안전한 사용에 대한 연소 부산물의 영향 결정)	ASHRAE	점화 시 생성되는 HF, COF ₂ 등 유해가스 영향 평가	진행중
ORNL (가연성 냉매를 사용하는 다양한 유형의 장비에 대한 충전 한도 설정 결정)	DOE	장비유형별 충전한도 설정기준 검토	완료
ORNL (다양한 HVAC&R 장비 유형에 대한 냉매 누출 특성의 실험적 평가)	DOE	장비별 실제 누설특성 계량화	완료
NIST (저GWP 냉매 혼합물의 가연성 순위를 위한 모델링 도구)	DOE	저GWP 냉매 혼합물 연소속도 예측 모델 개발	진행중

캘리포니아 F-gas Reduction Incentive Program (FRIP)

- 캘리포니아 대기자원위원회(CARB)는 F-gas 감축 인센티브 프로그램*을 통해 상업 및 산업 부문 냉동설비의 ultra-low-GWP(초저지구온난화지수) 냉매 기술 전환 촉진. 특히 GWP 10 미만 초저GWP <mark>냉매기술을 대상</mark>으로 하며, 이를 통해 시장보급 확산 및 온실가스 감축 효과 극대화 추구
- 高GWP 냉매를 사용하는 냉동시스템을 低GWP 또는 자연냉매 기반 기술로 대체하도록 하는 재정 지원 중심 인센티브 프로그램


지원 대상 및 자격 요건

- ◘ 지원 대상 기관
- ☑ 사업체(Business), 비영리단체(Nonprofit), 공공기관(Public Agency) 등
- ◘ 프로젝트 요건
- ☑ 캘리포니아 내 기존 냉동시설에 위치해야 함
- ☑ 위험물관리계획(RMP, Risk Management Plan)에 등록되어 있어야 함
- ☑ 연방 및 주 법규 준수 의무를 충족해야 함
- ☑ 高GWP 냉매시스템의 전면 또는 부분 교체 프로젝트여야 하며. 초저GWP 냉매 시스템으로 대체되어야 함
- (우선지원대상) 사회·경제적 취약지역 및 독립형 소규모 시설로, 해당 지역·시설은 인센티브 금액 상향 및 기술지원·홍보 강화 대상에 포함됨

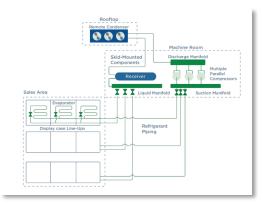
프로그램 구성 및 재원

구분	내용
총 예산	3,850만 달러(USD 38.5 million)
지원대상 부문	① 소매식품 냉동(Retail Food Refrigeration) ② 산업공정 냉동(Industrial Process Refrigeration) ③ 냉동창고 및 기타 냉동(Cold Storage and Other Refrigeration)
대상시설 요건	기존 시설로서 하나 이상의 시스템에 50파운드 초과 高GWP 냉매 사용 중인 냉동설비
관리·운영기관	주관: CARB 위탁운영: North American Sustainable Refrigeration Council (NASRC)
보조지원	NASRC를 통한 기술자문·견적획득·프로젝트 범위설정· 신청지원 서비스 제공

미국 대체냉매 기술개발 동향

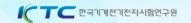
- 미국은 CO2 냉매를 활용한 고효율 HVAC 시스템 개발과 상업용 대용량 설비 기술 확대 추진
- GreenChill 프로그램을 통한 냉매 누출 방지 기술 개발 적용

HFCs 대체기술 개발 동향


○ 가연성 냉매를 대체하는 CO2냉매를 적용한 高효율 HVAC 부품 (압축기 등) 및 시스템 개발, 상업용 대용량설비로 기술 확대

주요 R&D 수행기관 및 과제명('15년/'24년)							
R&D 기관	기술명						
메카니컬솔루션	자연냉매 적용 소형 고효율 원심압축기 사용 HVAC 시스템						
Dais Analytic	자연냉매를 사용한 공기조화시스템용 고효율 멤브레인 HVAC 기술						
오크리지국립연구소	대체냉매를 이용한 새로운 고효율 자기열량 에어컨						
Xergy	물을 냉매로 사용하는 에너지 회수 모듈 및 전기화학 압축(ECC) 기술						
Ecotope	프로판과 이산화탄소(CO2) 냉매를 사용하는 전기 히트 펌프						
NETenergy	고효율 폐쇄 루프 하이브리드 CO2 히트 펌프						
퍼듀대학교	초저 GWP 냉매와 활성 멤브레인 에너지 교환기 기반 실외 공기조화시스템						
GTI Energy	CO2 히트 펌프용 고효율 오일 프리 압축기/팽창기						
Effecterra Inc.	CO2 냉매를 사용하는 25톤 상업용 옥상 유닛(RTU) 히트 펌프						
Evari Inc.	자연 냉매 히트 펌프용 저비용 소형 터보 압축기						
Harvest Thermal Inc.	주거용 고효율 CO2 히트 펌프의 광범위한 상용화						
미국냉난방기술연구소	주거용 고효율 저비용 CO2 히트 펌프						
* HVAC (Heating, Ventilation, and Air Conditioning) : 실내 공간의 난방, 환기, 냉방을 통해							

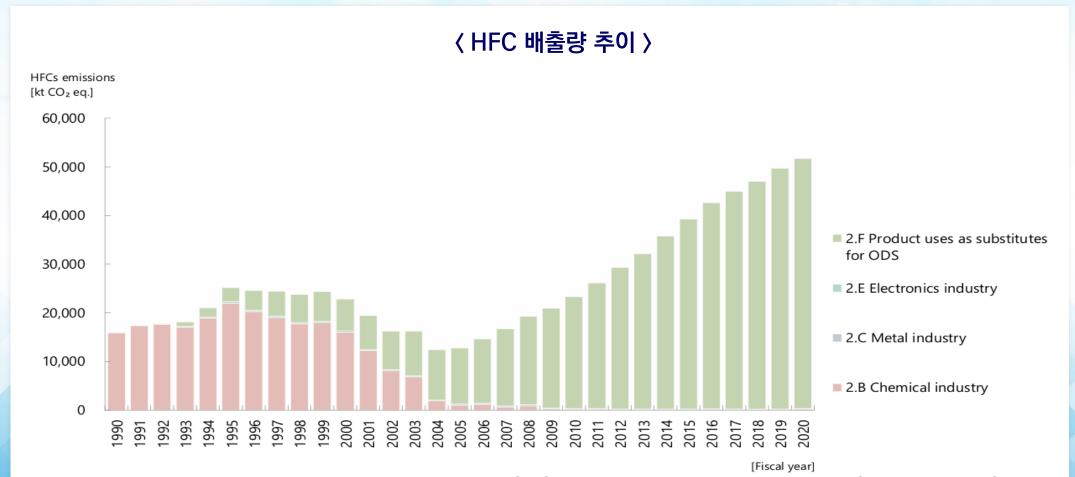
* HVAC (Heating, Ventilation, and Air Conditioning) : 실내 공간의 난방, 환기, 냉방을 통해 쾌적한 환경을 조성하는 시스템을 의미


냉매 누출 방지 기술 개발 동향

- ☑ GreenChill 프로그램을 통해 IoT 기반 냉매누출탐지 및 에너지효율 최적화 기술개발
- ☑ 냉매배출 억제 및 친환경 냉매로 전환을 위한 자발적 파트너쉽 프로그램으로 식품업계 상업용 냉동기에 적용하여 80% 냉매누출 억제, 20% 에너지절약
- ② 3가지 프로그램을 통해 기업 및 소매업체 냉매배출 억제 및 친환경 냉매 전환을 유도 → 그 중 'Advanced Refrigeration Technologies'을 통해 효율적 냉각 및 냉매 누출 방지 기술 개발

- ◀ Centralized DX System 도식
- 미국 내 대부분 식품 소매 업체는 DX System'을 통해 제품 냉각
- 본 시스템을 통해 기존 냉각 시스템보다 더 적은 양의 냉매 충전 가능 및 냉매 사용량 감소
- 독힙형 시스템 설치를 통한 냉매 누출률 방지 및 사용량 제한 준수할 수 있도록 유도

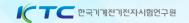
미국 DOE의 냉매 관련 주요 프로젝트


- 미국 DOE는 몬트리올 의정서, 파리협정, AIM법, 키갈리 개정서 등 국제 기후정책 및 환경규제 흐름에 따라 CFC/HCFC → HFC → 저GWP 냉매 및 자연냉매로 전환 추진, 관련 프로젝트 수행
- DOE 산하 주요 국책연구기관은 공동으로 저GWP 냉매 연구 수행

[DOE의 냉매 관련 주요 연구 및 프로젝트 요약표]

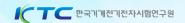
구분	프로젝트 / 비고	수행기관(기간)			
저채 UO 기바 비서	저GWP 냉매 R&D 로드맵 수립 - 기술 우선순위 도출	DOE(EERE, OSTI) (2011~2013)			
정책 대응 기반 분석	냉매 시장·공급망 분석 - 비용 및 정책 영향 분석	NREL, ORNL (2020)			
ᄖᄱᄱᄱᅳᄸᄀ	HPDM 모델 확장 - 저GWP 냉매 시뮬레이션 기능 추가	ORNL (2018)			
냉매 성능 연구	저GWP 냉매 열교환기 실증 - R-454C, R-455A 등 대상	ORNL (2023~2024)			
	이소부탄 냉장고 개발 - R-600a 기반 고효율 설계	ORNL + Whirlpool (2022~2025)			
시스템 개발 및 실증	저GWP 히트펌프 구조 개발 - 프로판 기반 4루프 시스템	ORNL + Emerson (2023)			
	CO₂/프로판 이중루프 시스템 - 상업용 고효율 냉난방	Purdue Univ. (2023)			
나초 가디 미 아저서 하나	냉매 누출 감지 센서 개발 - A2L 냉매용 저비용 고신뢰 센서	ORNL (2022~2025)			
누출 감지 및 안전성 확보	냉매 누출 실증 실험 - 실시간 유속/압력 측정, 1·2단계	ORNL, AHRTI (2019, 2023)			
미괴 되하 기소 개바	자기 냉매 기반 냉동기 개발 - 비압축 사이클용 신소재	GE Global Research (2010~2013)			
미래 지향 기술 개발	BENEFIT 22-23 주요 과제 4건 - 증발기, 히트펌프 등	NCSU, Maryland Univ. 등 (2023)			

일본의 HFCs 온실가스 배출 현황 및 전망



〈 일본의 ODS 대체물질 사용부문(2F) 온실가스 배출 현황 및 전망 〉 (백만톤 CO_2eq)

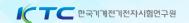
연도	1990	1995	2000	2005	2010	2013	2015	2020	2030
HFCs 배출량	15.9	25.2	22.9	12.8	23.3	32.1	39.3	51.7	14.7
국가 총량	1,275.4	1,379.5	1,378.9	1,382.0	1,303.9	1,408.2	1.321.6	1,150.1	813.0


일본의 HFCs 감축 정책 추진 현황

〈 일본의 ODS 대체물질 사용부문(2F) 감축 정책 추진 현황 〉

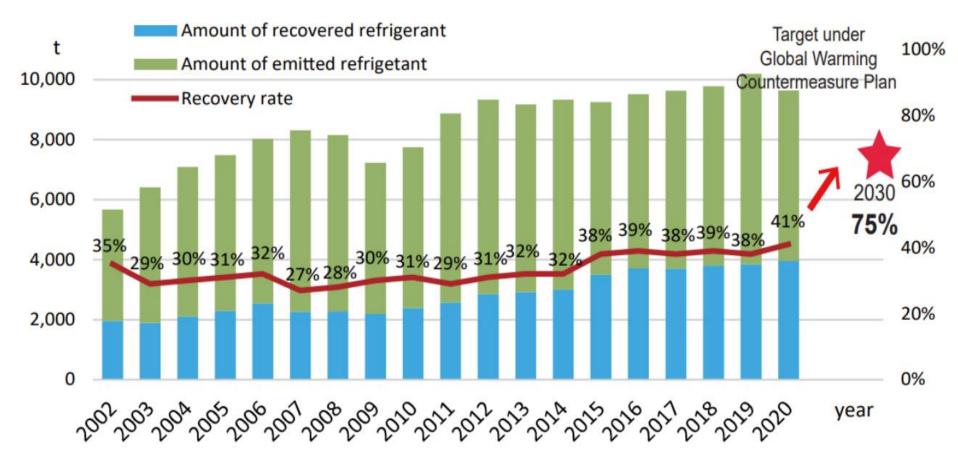
감축정책 및 조치명	정책 및 조치 목표	감축정책유형	이행 상태	간략한 설명	시행	시행 주체	감축효과 추정치 (비누적, 백만톤 CO2e)		
					연도	1 * 41	'20	'25	′30
	• 가스 및 제품 제조 분야에 서 비불화탄소 및 저 GWP 제품 홍보		시행 중	• 불소화 탄소의 합리적인 사용 및 적절한 관리에 관한 법률에 따라 가스 및 장비 제조업체에 게 비불소화 탄소 및 저 GWP 제품 홍보	2015	MOE METI	3.06	8.9	14.6
	• 사업용 냉장 및 에어컨 장 비 사용 중 불소화 가스 누출 방지	법/기준 보조금 기술 개발 인식 제고 기타	시행 중	• 장비 사용자가 검사 중 누출 방지 조치를 취하도록 요청	2015	MOE METI	NE	13.3	21.5
(HFCs, PFCs, SF6, NF3)	• 폐기된 사업용 냉장 및 에어컨 장비로부터 불 소화 가스 회수	법/기준 보조금 기술 개발 인식 제고 기타	시행 중	• 2022년 법 개정으로 강화된 조 치를 통해 불소화 가스 회수 프로모션 및 전체 생애 주기 동안의 조치 홍보	2001	MOE METI	-0.21	13.5	16.9
	• 폐기된 사업용 냉장 및 에어컨 장비로부터 불 소화 가스 회수	법/기준 보조금 기술 개발 인식 제고 기타	시행 중	• 가정용 전자제품 재활용법에 따라 폐기된 가정용 에어컨의 수 거를 홍보하고 냉매로 포함된 HFC 회수량을 증가시킴	2021	MOE METI	0	0.62	1.13
	• 산업의 자발적인 이니셔 티브 홍보	법/기준 보조금 기술 개발 인식 제고 기타	시행 중	• 산업의 자발적 행동 계획에 기초 한 배출 통제를 통한 포괄적인 조치 요구	1998	MOE METI	0.21	0.88	1.2

일본의 2050 탄소중립 달성을 위한 HFCs 관리방안

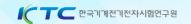


■ 2021년 환경성 및 경제산업성은 「대체 프레온 분야의 2050 탄소중립을 향한 향후 관리대책」를 공표하고 키갈리 개정 이행, 녹색냉매장비 보급 확대, HFCs 누설·회수 대책 등을 포인트로 방향성을 구축함

[2021년 일본의 2050 탄소중립 달성을 위한 HFCs 관리대책 개정안 (*신규대책*)]


[2021년 글은의 2030 단포공립 글경글 위한 RFCS 단디네꼭 제경한 (전 ㅠ네꼭)]		
구분	HFCs 감축방안	
HFCs 제조량·수입량의 감축	・몬트리올 의정서 개정에 따라 HFCs 생산・소비의 단계적 감축 ・키갈리 개정서 이행 (2036년까지 85% 감축)	
냉매의 전환	 · 지정 제품 제도에 따른 저GWP 냉매로의 전환 · 저GWP 냉매 사용 촉진, 자연 냉매 장비의 보급 확대 강화 · 냉매를 사용하지 않는 신냉동공조기술 개발 · 안전성 확보를 전제로 기존 기기에서 저 GWP 냉매로의 전환 	
제품 제조 시 누출량의 감축	·산업계에 의한 HFCs의 배출 억제를 위한 자주적 행동 계획에 따른 대처 촉진	
제품 사용 시 누출량의 감축	•계량 누출량 측정 제도의 효과적인 운영 •누출 및 배출 억제를 위한 유지·운영 (기기 관리자의 점검 실시에 따른) •누출을 억제하는 시공 기술의 향상 •항상 모니터링 시스템의 보급 촉진 •대량 누출기기, 노후기기 사용자에 대한 지도·감독의 강화	
제품 폐기 시 방출량의 감축	•누출 및 배출 억제를 위한 유지·운영 (폐기 장비의 확실한 회수 의뢰) •폐기 장비의 냉매 회수·파쇄 시 문제점 해결·실천 •가전 리사이클 업계의 폐기 냉매 회수 대책의 강화 •폐기 업자의 대량 방출 시의 관리·감독 강화 •RaMS를 활용한 폐기 장비의 관리 강화	

일본의 냉매 회수 정책


■ 일본은 45개 가전 재활용업체, 35개 F-gas 재활용시설, 58개 F-gas 폐기시설을 운영하여 '20년 기준 연간 약 4천톤의 불소계 냉매를 회수하여 41% 회수율 달성, '30년까지 75%로 샹항하는 목표 설정

[일본의 연도별 불소계 냉매 회수량, 회수율 추이]

출처: Ministry of the Environment in Japan, 2022.02.27. < https://www.env.go.jp/press/press_00983.html >

일본의 HFCs 감축정책 추진 성과 - 누출율 개선

■ 2024 국가 인벤토리에서 최근 감축 정책 및 조치에 따른 누출억제 효과를 반영하여 배출계수 변경, 사용 단계 배출계수를 큰 폭으로 낮춤

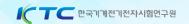
Table 4-64 Type of HFC and emission factors during operation, by type of commercial refrigeration

Type of commercial refrigeration		Type of HFC	Amount of refrigerant	Emission factor		Share in the number of HFC devices operated
				- 2015 ³⁾	2016 -	(2022)
Large-size refrigerators	Centrifugal refrigerating machines	HFC-134a, R404A, etc	300 - 2,300 kg	7%	5.3%	0.02%
	Screw refrigerating machines	Same as above	Same as above	12%	8.9%	0.04%
Mid-size refrigerators	Separately-installed refrigeration showcases	R-404A, R- 410A, etc	20 - 41 kg	16%	8.9%	7%
	Refrigeration units	R-404A, etc	2 - 30 kg	17%	8.9%	2%
	Condensing units	R-404A, R- 410A, etc	Same as above	13%	8.9%	1%
	Chilling units for refrigerators	R-407C, R- 410A, etc	Same as above	6%	0.8%	0.4%
	Other ¹⁾	R-404A, HFC- 134a, etc	Same as above	15%	8.9%	2%
Commercial air conditioning devices	Packaged air conditioners for buildings	R-410A, R-407C, etc	37 kg	3.5%	2.9%	9%
	Packaged air conditioners for stores	R-410A, R-32, etc	3 - 43 kg	3%	1.0%	42%
	Packaged air conditioners for facilities	R-410A, R- 407C, etc	Same as above	4.5%	1.8%	3%
	GHPs	R-410A, R- 407C, etc	Same as above	5%	2.7%	2%
	Chilling units for air conditioners	R-410A, etc	Same as above	6%	0.8%	0.4%
Small-size refrigerators	Built-in refrigeration showcases	R-404A, HFC- 134a, etc	0.1 - 3 kg	2%	1.0%	11%
	Other ²⁾	HFC-134a, R- 410A, etc	Same as above	Same as above	Same as above	20%

Reference: Committee for Greenhouse Gas Emissions Estimation Methods in FY2023

Note: 1) Refrigeration unit for vehicles, refrigeration unit for vessels, other transport refrigeration units

2) Ice makers, water coolers, dehumidifiers, commercial refrigerators

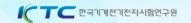

3) Documents of the 2nd Refrigerant Policy Working Group, Group for Prevention of Global Warming, Chemical and Bio Sub-Group, Industrial Structure Council, Ministry of Economy Trade and Industry (July 26, 2010), and data provided by METI

사용 단계 배출계수 변경

- ✓ 각 장비 유형별 특정 기간 동안 냉매 충전량과 고장 발생관련 대규모 표본조사를 통해 배출계수 결정
 (260,000개 표본에 대해 2007년 ~ 2009년 조사 수행)
- ✓ '2015.4. 프레온배출억제법 발표로 장비 사용자에게 사용 중 냉매 누출에 대한 검사 및 기록 의무 부여
- ✓ 냉매관리시스템(RaMS)을 통해 해당 데이터 관리
- ✓ 냉매관리시스템(RaMS) 데이터와 냉매의 물질 흐름 등을 기반으로 2016년 이후 배출계수 설정

*출처 : National Greenhouse Gas Inventory Document of JAPAN (2024)

일본 대체냉매 안전 및 기술기준



- 일본은 ISO 표준을 직접 채택한 JIS(일본공업규격) 중심으로 냉매 시스템의 안전·환경 요건 법제화
- JIS B 8601(ISO 5149) 및 JIS B 8619(ISO 817)은 냉동·공조 장비의 설계, 설치, 냉매 분류체계를 규정하며, 「고압가스보안법」 및 「프레온류법」과 연동되어 실무적으로 운영

[일본 냉매 안전기준 표준]

구분	표준(지침)번호 / 명칭	주요 내용	비고
냉동시스템 안전요건	 JIS B 8601 시리즈 Refrigerating systems and heat pumps — Safety and environmental requirements 	 ISO 5149과 동일 구조 설계·설치·운전·폐기 단계의 안전 요구사항 일본의 건물·전기안전 기준과 연계 	• ISO 5149 대응
냉매 분류· 명칭 기준	 JIS B 8619 Designation and safety classification of refrigerants	 ISO 817 대응 표준 냉매의 화학명칭·안전등급(A/B, 1~3) 분류 	• ASHRAE 34와 동일
관련 법령 연계	• 고압가스보안법 / 프레온류법	 인화성 냉매 취급, 충전·회수·처리 시 안전관리 의무화 누설 감지, 점검 주기, 냉매회수사업자 등록제 운영 	• JIS 표준 준수 의무

일본 자연냉매 기기 도입 촉진 사업

- 일본은 「콜드체인을 지원하는 냉동 및 냉동설비의 탈탄소화 및 탈탄소화 추진을 위한 보조금」사업을 통해 냉동냉장 창고, 식품제조 공장·소매점에 <mark>탈탄소 자연냉매 설비 도입에 필요한 비용 일부를 지원</mark>
- (목적) 산업 및 상업용 냉동·냉장기기에서 사용되어 온 高GWP HFC 냉매를 대체하여 자연냉매(암모니아, CO₂, 공기, 물 등) 사용 고효율 탈탄소형 자연냉매 기기의 보급 촉진

지원 대상 및 자격 요건

♥ 사업 개요


구분	내용
사업명	콜드체인을 지탱하는 냉동·냉장기기의 탈프론·탈탄소화 추진사업
주관기관	일본냉매·환경보전기구 (JRECO, Japan Refrigerant and Environment Conservation Organization)
주관부처	환경성(Ministry of the Environment, MOE)
사업 성격	국가 보조금 사업

- 지원 대상 기업
- ☑ 민간기업, 지자체, 개인사업자 등
- ☑ 중소기업 정의는 일본 「중소기업기본법」 기준에 따름(제조업 3억엔 이하, 300인 이하 등)

보조금 대상 및 보조 내용

- ♥ 보조대상
 - ☑ 냉동·냉장창고
 - ☑ 식품 제조공장
 - ☑ 식품 소매점의 쇼케이스 등 (컨비니·슈퍼 포함)
 - → 위 시설에 탈탄소형 자연냉매기기를 도입하는 사업
- 🗘 보조율
 - ☑ 원칙 1/3 이하
 - ☑ 단, "선진적 중소기업"으로 평가된 상위 20% 이내 사업자는 최대 1/2까지 인상 가능
- ♥ 보조금 상한
 - ☑ 1개 사업자당 최대 5억 엔 (프랜차이즈형 편의점은 2.5억 엔 한도)

일본의 대체냉매 기술 및 냉매 재활용 기술 개발 동향

- 대체냉매 적용을 위한 설비 및 AI 기반 스마트 관리 기술 적용 설비 설계
- 냉매 누출 방지를 위한 IoT 및 AI 기반 기술과 예측·모니터링을 활용한 효율적 관리기술 개발 진행

HFCs 대체기술 개발 동향

- ♥ HFCs 대체 요소 기술
- ☑ 대체냉매 적용 설비 기술, 다중냉매 설비, Al 기반 설비

요소기술	내용
대체냉매 설비	 HFO-1234yf, 및 HFO-1234ze와 같은 低GWP 냉매를 사용할 수 있도록 설계된 냉동공조 설비 고압환경에서도 안정적인 성능을 유지하는 CO₂ 냉매 적용 설비 초임계 CO₂ 시스템을 활용하여 에너지 효율성과 냉각 성능을 동시 개선
다중냉매 설비	 여러 냉매(HFO, CO₂, NH₃ 등)와 호환 가능한 설비 냉매 변경 시 설비 교체 최소화
AI기반	• 인공지능(AI)기술을 통해 냉매 순환 경로를 최적화하고, 에너지 소비를 줄이는 자동 제어 시스템이 탑재된 설비

- ♥ 기술개발 동향
 - ☑ 低GWP 냉매(HFO, CO₂, NH₃ 등)를 활용한 고효율, 저충전 설비 설계와 AI 기반 스마트 관리 기술 적용 설비 설계

냉매 누출 방지 기술 개발 동향

- ♥ 냉매 누출 방지 요소 기술
- ☑ 냉동공조설비 가동시 냉매 누출 최소화하기 위한 누출탐지 기술과 누출 감지 및 위치 실별, 원격제어를 활용한 설비제어기술

기술과 구출 심시 옷 귀시 글길, 전식세이글 필융인 길미세에기술	
요소기술	내용
직접감지 기술	• 설비 주변 공간의 공기를 샘플링, 코로나 방전, 가열 다이오드, 초음파, 적외선, 응향신호등 센싱 기술
간접감지 기술	• 압력, 온도, 압축기 전류, 액체레벨 등과 같은 관련 매개변수를 일정기간 동안 분석하여 비정상적인 시스템 성능을 식별하는 기술
설비기밀 기술	 조인트 밀봉, 시스템 파이프, 플레어 연결, 브레이징 조인트 제어 등 누출요소를 줄이는 설비피팅기술* * SAE J2727-2023 이동식 에어컨 시스템 이동식 에어컨 냉매의 냉매 배출 추정 (Society of Automotive Engineers, 미국자동차공학회)

- ♥ 기술개발 동향
- ☑ IoT, 클라우드 기반 데이터 분석, 예측유지관리 Al알고리즘 기술, 실시간 모니터링 및 사전유지관리 솔루션 등 첨단누출감지기술 개발 진행중

냉매 全주기 관리를 위한 글로벌 협약 (The Global Cooling Pledge) (★ TC 한국기전기전자시회연구원

- 2050년까지 2022년 수준을 기준으로 전 세계적으로 모든 부문에서 냉방 관련 배출량을 최소 68% 줄이는 목표로 협력하기로 약속 [23년 냉방부문 전력소비량 비중 20%, 50년 배출비중 10% 전망]
- 2026년까지 국가 냉방 행동 계획을 발표, 2030년까지 국가 건축 에너지 규정을 제정, 2030년까지 전 세계적으로 판매되는 신규 에어컨 장비의 평균 효율 등급을 2022년 전 세계 설치 기준 대비 50%까지 향상을 의무사항으로 제시

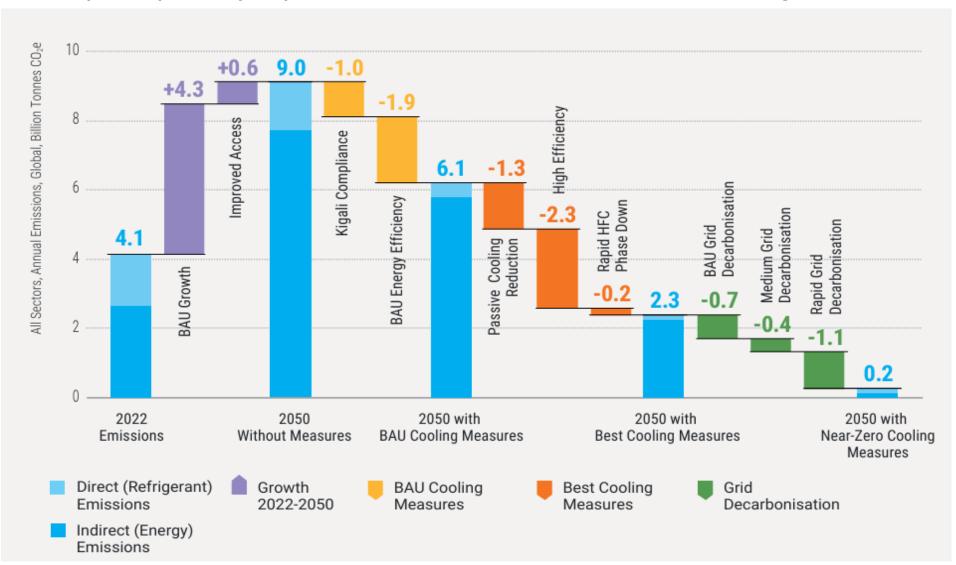
[Life-cycle stages of refrigerant gases]

Manufacturing/ Import of refrigerant gases

devices

Operation of cooling devices (service/repairs) Recovery of refrigerant gases at end-of-life of cooling devices

Recycling/ reclamation/ destruction of gases



출처: UNEP(2023), Global Cooling Watch 2023

냉매 全주기 관리를 위한 글로벌 협약 (The Global Cooling Pledge)

[Global pathway and key steps to achieve near-zero GHG emissions from cooling, 2022-2050]

출처: UNEP(2023), Global Cooling Watch 2023

